—

] @
5 |y
\A

.\ ﬂ"/ \’4

» 4

How Meta-Programming With Al
Will Transform Your Software Engineering Career

Moving beyond basic code generation to true collaboration with Al

Dr. Randy Olson
Principal Al Strategy & Solutions Architect, AE Studio

The Evolution of Software Engineering

From manual searching to Al partnership - we are experiencing a transformation in how we build software.

.

[2010s] Stack Overflow Era [2022] ChatGPT Generation [2025] Al Collaboration
Searching and adapting fragmented Al generates complete code blocks but True partnership that elevates
solutions from the web. with limited collaboration. development to system architecture

level.

Al-Assisted Coding + Vibe Coding

</> Glorified Autocomplete ‘2? Unlocked Potential gg Beyond Vibe Coding
Most developers use Al tools Research demonstrates 20-50% True meta-programming
superficially, asking for snippets efficiency gains with structured requires discipline, not just quick
without strategic direction. Al collaboration approaches. Al-generated solutions.

The techniques in this presentation will help transform your relationship with Al coding assistants.

What Is Meta-Programming?

Simply put: "Programming your programmer"

Why Meta-Programming Matters

Speed Quality Innovation
Complete in hours what used to take Reduce bugs by having Al generate Explore more solution approaches in
days. comprehensive test suites. the same timeframe.

These benefits compound over time, creating exponential productivity gains that transform engineering organizations.

Ul

@

o Al Quality
g data
|

src

@RS

.gitignore
README.md
W requirements.txt

@ streamlit_app.py

ing Your Al Partnership: First Principles

! @ streamlit_app.py X D v «© ® M - New chat

@ streamlit_app.py > {} st

1

— @ @ streamlit_app.py
import streamlit as st

from pathlib import Path
from typing import Dict, List, Optional, Tuple
import os < Agent %1 claude-4-sonnet

from dotenv import load_dotenv

import sys
sys.path.insert(@, os.path.abspath(os.path.dirname(__file__)))

from src.ai_analyzer import analyze_sign_pair, load_and_encode_image
from src.pdf_utils import pdf_page_to_base64
from src.main import find_sign_pairs

dotenv_path = Path(__file__).resolve().parent / '.env'
load_dotenv(dotenv_path=dotenv_path)

st.set_page_config(
page_title="Sign Nonconformity Analysis",
page_icol $5
layout="wide"

def get_image_pairs() -> Dict[str, List[Tuple[Path, Path]]]:
Scan data directory and organize image pairs by project.
Returns a dictionary of project names to lists of image pair tuples.
data_dir = Path("data")
projects = {}

Context Management: New Chat = New Context

©, D

Clear Conversations, Avoid Context Pollution JE L

Clear Results New chat + O - X
Context pollution confuses

Starting fresh sessions for your Al partner, leading to ©@ e streamlit_app.py

each new topic keeps Al muddled code suggestions.

responses focused.

[

Deliberate Practice

oo Agent 21 claude-4-sonnet

Make "New Chat" a deliberate practice in your meta-
programming workflow.

Effective Al Prompting Techniques

&%

(o

Request Multiple Solutions

Ask Al to generate different approaches to explore the solution space fully.

Treat Al Outputs as Drafts

View Al-generated code as starting points, not final implementations.

Request Specific Changes

"Convert this repetitive code into a reusable function with proper error handling.

Iterate Strategically

Begin with simple implementations before requesting advanced optimizations.

Beyond Basic Code Generation

<[> Code Comprehension A Test-Driven Development
Use Al to answer questions about existing codebases Generate tests using frameworks like pytest to validate
and create documentation. Al-generated code functions correctly.

If you're just learning, have Al explain the code it just

Paste the failed test results into the chat with the Al
wrote for you.

Use the Right Al Model

T

Planning Phase: Claude Sonnet 4.0 Thinking

The "Thinking" variant excels at abstract reasoning and strategy
development.

e Architecture planning
e Solution brainstorming

e Code organization strategy

Implementation Phase: Claude Sonnet 3.5

Better suited for practical coding tasks and implementation details.

e Writing actual code
e Debugging existing solutions

e Optimizing performance

Clear Communication:
Speaking Your Al's Language

Configuring Your Al: Cursor Rules

Create project-specific Al behaviors with simple configuration files at the root level.

Cursor Settings

&% General R
ules
A Features Rules provide more context to Al models to help them follow your personal preferences and operate more efficiently in
your codebase. Learn more about Rules
il Models
&) Rules User Rules
2 MCP These preferences get sent to the Al on all chats, composers and Command-K sessions.
B8 Indexing
PERSISTENCE
A Beta You are an agent - please keep going until the user's query is completely resolved, before ending your turn and

yielding back to the user. Only terminate your turn when you are sure that the problem is solved.

TOOL CALLING

If you are not sure about file content or codebase structure pertaining to the user's request, use your tools to read
files and gather the relevant information: do NOT guess or make up an answer.

PLANNING

You MUST plan extensively before each function call, and reflect extensively on the outcomes of the previous
function calls. DO NOT do this entire process by making function calls only, as this can impair your ability to solve
the problem and think insightfully.

Configuring Your Al: File-Specific Rules

Create file-specific rules with simple configuration files at the root level.

() conventions.mdc M X

.cursor > rules > [conventions.mdc

Rule Type File pattern matches ()
Auto Attached N4 *py X

Key Conventions and Code Quality Standards

Dependency Injection

— Use FastAPI's dependency injection for managing state and shared resources
— Implement proper scoping for dependencies

- Use dependency overrides for testing

API Performance

— Prioritize API performance metrics (response time, latency, throughput)
— Implement proper monitoring and logging

— Use appropriate caching strategies

Code Structure

— Structure routes and dependencies for readability and maintainability
— Use async functions for I/0 operations

— Keep route handlers thin, move logic to service functions

— Group related functionality in dedicated modules

Web-Extended Al

Supercharge your coding with real-time web access directly within your Al interface.

Key Features Advantages

o Use @web commands to instantly search documentation .

Access the latest frameworks and libraries with up-to-
without context switching.

date information.
o Reference specialized APIs with targeted commands like .

Eliminate outdated knowledge limitations that plague
@openai.

traditional Al models.

Web-extended Al bridges the gap between static models and evolving tech landscapes.

¥ PLANNED_INTERFACE.md ¥ IMPLEMENTATION_PLAN.md X TODO.md @ clipy

¥ IMPLEMENTATION_PLAN.md > (= # Implementation Plan > (23 ## Project Structure
1 # Implementation Plan

High-Level Overview

WS wWwN

The "sonar tool is designed to help AI agents understand and intere
takes a webpage URL and returns a clean, markdown representation of

Living Project Plan s

K

o

7 Core principles:
8
9 - Clean, parseable output in markdown format
Establish a dynamic project blueprint that evolves with your Al partnership B i
throughout development. 12 - Focus on AI consumption
1; ## Project Structure
15
16
17 sonar/
18 }— init .py
12 |— cli.py # Command-line interface
Ensure 20 }— fetch.py # Main fetch logic
o o O 21 |— browser.py # Playwright handling
Malnll.aln a s'“gle developmenf 22 }— converter.py # HTML to markdown
° 23 console.py # Console log handling
Create structured source of truth strategy remains el ot I
. 25
documents that that persists coherent as 2% tests/
o o 27 — init .py
bothhumansand across multiple requirements 28 |— conftest.py # Test fixtures
o o . 29 |— test fetch.py
Al canreference coding sessions. shift. 30 |— test browser.py
. 31 }— test converter.py
consistently. 32 L test_console.py
S
34
Your plan becomes a living conversation with your Al, allowing seamless . ittt
continuity between work sessions. e e
39 class Browser:
40 def _init (self):
41 self. browser = None
42 self. launch lock = asyncio.Lock()
:jl async def ensure browser(self):

45 async with self. launch lock:

Maintaining Project Memory

Build a persistent Cline Memory Bank to preserve knowledge between Al sessions.

projectbrief.md

|

productContext.md systemPatterns.md techContext.md

l

activeContext.md

|

progress.md

This systematic approach transforms fragmented conversations into a coherent project intelligence.

Test-Driven Al Debugging

Accelerate your debugging workflow by establishing a continuous feedback loop with Al assistance.

1. Write Tests with Al 2. Execute Tests
Have the Al to create comprehensive <[> Run tests to identify failures and
tests for your code. unexpected behaviors in your code.

Implement Fixes

o~ 3. Feed Failures to Al
Apply Al-suggested solutions while R/
B gg . &) Share test results with Al and ask it to
maintaining control over . ,
fix any issues.

implementation details.

This iterative cycle creates a virtuous feedback loop that improves both code quality and Al understanding.

Expanding Your Partnership: Power Tools

The Model Context Protocol (MCP) creates a powerful ecosystem of Al augmentation tools.

descepe
Before MCP After MCP
.
LLM
LLM
I Unified API
Unique API Unique API
Unigue API Model Context
@ Protocol (MCP)
Q § A
I
® Unique API Unique API
Unique API
v

th A

Integrations transform basic Al interactions into comprehensive development systems.

Popular MCP Servers

3

Linear MCP

Seamlessly integrates Al coding
assistants into issue tracking
workflows on Linear.

% Taskmaster AlMCP

Proactively tracks your tasks and
breaks them into manageable

chunks.

S

Memory Bank MCP

Creates persistent knowledge
repositories for long-term

projects.

The Collaborative Future

Start with a clear plan

1

Establish clear boundaries and requirements upfront. Al thrives on well-defined parameters.
2 Iterate on Al outputs

Treat first responses as starting points. Refine through specific feedback cycles.
3 Build verification systems

Implement robust testing frameworks. Verify Al suggestions against established quality metrics.
4 Maintain project memory

Organize knowledge repositories systematically. Enable Al to reference past decisions consistently.
5 Expand through integrations

Connect specialized tools via the Model Context Protocol. Create powerful meta-programming ecosystems.

Most importantly: Treat your Al coding assistant as a partner, not a glorified auto-complete.

Transform Your Software
Engineering Career

Meta-programming isn't just about coding faster.

It's about becoming a new kind of software engineer.

Want a job? Want training?

PS. AE Studio € meta-programmers

Want to connect?

'
""""

